

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 1 of 24

Introduction to eROS (easyRadio Operating System)

eROS, the easyRadio Operating System is used within eRIC, the easy Radio Integrated Controller

RF transceiver module.

eRIC’s processor memory (32k) is partitioned and eROS provides a simplified and elegant means

of configuring and programming a complex microcontroller and the multiple control registers of

the RF transceiver. The other partition provides an optional user accessible application code area.

3.3V

Regulator

Non-

Volatile

Flash

eRIC

BPF Temp

Sensor

RF Transceiver

Operating System

Application

RF

Microcontroller eROS +

Bootloader

16k

16K available

Figure 1 eRIC Transceiver Block Diagram

Radio parameters such as frequency, channel, output power and data rate are passed to the OS

by the application code and radio data is sent and received by simply calling predefined functions.

The eROS API replaces low level chip specific code with intuitive pin commands that allow the

multiple general purpose I/O pins and internal function blocks to be configured and interfaced to

external hardware. These built in functions make customisation easy for the novice and powerful
for advanced programmers.

Code is written in ‘C’ and currently supports the CC4305137 System-on-Chip (SoC) RF

transceiver IC from Texas Instruments (TI).

This architecture eliminates the need for a separate application microcontroller and thus

minimises cost and power consumption for simple ‘sense and control’ RF nodes such as might be

employed within the ‘Internet of Things’.

eRIC modules incorporating eROS offer the following features:

 250 byte radio transmit/receive buffers

 Precise RF frequency control

 Adjustable RF Power from -30 to +12dBm

 Over air RF data rates of up to 500kbps

 Power saving modes

 Built in Temperature Sensor

 18 General Purpose Input/Output Pins (GPIO)

 UART, SPI, A-D convertor

 256Bytes of EEPROM *

 2K user RAM

 Dynamic CPU clock speed control

* Flash memory emulated as EEPROM

Software Development

Getting started:

 Locate easyRadio Companion Vx.x.x setup program on the USB stick (or download
from www.lprs.co.uk) and double click to install on the PC.

 Download latest eRICxeasyRadioVx.x .zip file from www.lprs.cp.uk

 Download and install the latest Texas Instruments Code Composer Studio (CCS) from:

http://processors.wiki.ti.com/index.php/Category:CCS

 Run the CCS program and from the ‘Project’ tab select ‘Import CCS Project’. (Figure 2)

 Select ‘Archive’ file and browse to eRICxeasyRadioVx.x.zip archive.

 Select the Discovered project and click Finish.

 Modify the source code as required and compile/build.

 The program can then be ‘flashed’ to the module using easyRadio Comapnion Vx.x.x
software tool.

Further information on programming is provided within the eRIC Tutorials 1, 2 and 3.

http://www.lprs.co.uk/
http://www.lprs.cp.uk/
http://processors.wiki.ti.com/index.php/Category:CCS

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 2 of 24

Figure 2 Import CCS Projec

 easyRadio Companion Vx.x.x

 On the Development Board bridge JP1 (Bootloader Enable) with the supplied jumper.

 Connect the Development Board to the PC using the supplied USB cable.

 Run the installed easyRadio Companion Vx.x.x

 Switch the Development Board ‘On’ and momentarily press the ‘Reset’ push button

switch.

 Select eRIC module and click OK.

 Select the baudrate (19200 default) and click Open Port.

Figure 3 easyRadio Companion V4.0.5

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 3 of 24

eROS Application Programmers Interface

Radio Functions

Functions Parameters Description Notes OS

eROS_Initialise(RadioFrequency); RadioFrequency can be any frequency value

e.g.

eRIC_RadioInitialise(43392000);

RadioFrequency = 0 when Radio is not

required

Initialises the eROS and set RF registers if

required and set the frequency as passed in

This MUST be done once to set up eROS

All further updates to RF use the eRIC_RadioUpdate()

function

eRIC_Rx_Enable(); None Enable the Radio receiver If this is not enabled, Radio cannot receive any data, but can

transmit data. Works only as transmitter.

eRIC_Rx_Disable(); None Disable Radio receiver

Can be disabled at any time

eRIC_RadioUpdate(); None

Values are changed prior to call

Changes to Power, Channel, Frequency, Data

Rates etc. are stored using this function

eRIC_RfSenddata(); None Sends ‘eRIC_RadioTx_BuffCount’ bytes from

‘eRIC_RadioTx_Buffer’ array

eRIC_RadioTx_Buffer must be loaded, and

eRIC_RadioTx_BuffCount set before this call

eRIC_ReadRfByte() None

Returns next unread RF byte from buffer

E.g.

while(eRIC_Rxdata_available)

{

 myBuffer[i++] = eRIC_ReadRfByte();

}

eRIC_RadioAsyncMode();

Was:

eRIC_RawDataModeOn();

None Turn Raw Data mode on E.g. To enable Rx Rawdata:

eRIC_RadioAsyncMode();

Pinx_SetAsAsyncRxData(); // x ericpin

E.g. To enable Tx Rawdata:

eRIC_RadioAsyncMode();

Pinx_SetAsAsyncTxData(); // x ericpin

Pinx_SetHigh(); or Pinx_SetLow(); to send data.

eROS

4

eRIC_RadioPacketMode();

Was:

eRIC_RawDataModeOff();

None Turn Raw data mode off Enters into eRIC Packet Mode. eROS

4

eRIC_SetModulationCarrierOn(); None Sets the Modulated Carrier on Transmit continuous modulated Carrier at selected Over Air

data rate. Useful for checking transmitter frequency and RF

Power output

eRIC_SetUncalibratedModulationC
arrierOn();

None Sets the Modulated Carrier On without
calibrating frequency

 eRIC
V1.4

eRIC_SetHighSideCarrierOn(); None Sets high side FSK Carrier on Transmit continuous upper FSK. Carrier Useful for checking

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 4 of 24

FSK deviation limit

eRIC_SetLowSideCarrierOn(); None Sets low side FSK Carrier on Transmit continuous lower FSK Carrier Useful for checking

FSK deviation limit

eRIC_SetCarrierOff(); None Turn off transmitter Carrier

eRIC_Tx_CarrierOn(); None Turns on transmitter Carrier Mostly useful in AsyncMode to turn transmitter on eROS

4

eRIC_Tx_CarrierOff(); None Turn off transmitter Carrier Mostly useful in AsyncMode to turn transmitter off eROS

4

eRIC_GetLastPacketRSSI(); None This returns the real signed RSSI value in

dBm of the last packet received

(Only in Packet mode)

This value is updated every time a new message is received..

E.g. -23db or -87db etc.

eROS

4

eRIC_GetLiveRSSI(); None This returns the signed live RSSI value in
dBm

Useful in applications to find range of the receiver.
E.g. -107dbm, -93dbm etc.

eROS
4

eRIC_GroupIDEnable(IDNumber); IDNumber = 4578; Any two byte groupID eRIC_GroupID(4578);

Note: Whenever groupID is enabled, eROS CRC is also added

for more secured data packet

eROS

4

eRIC_GroupIDDisable(); None Disables GroupID eRIC_GroupIDDisable(); eROS

4

Variables VariableType Description Example

eRIC_Frequency unsigned long Desired frequency in Hz of the radio eRIC_Frequency = 869750000;

eRIC_RadioUpdate();*

eRIC_Power signed char

(-30 to +12)

Power level from -30 to +12dBm eRIC_Power = -12; // (Set to -12dBm)

eRIC_RadioUpdate();*

eRIC_Channel unsigned char

(0 – 255)

Sets frequency channel

(eRIC_Frequency + (eRIC_Channel x

eRIC_ChannelSpacing))

eRIC_Channel = 4; // Set Channel 4

eRIC_RadioUpdate();*

eRIC_Channel = 85; // Set Channel 85

eRIC_RadioUpdate();*

eRIC_ChannelSpacing unsigned long Sets the space in Hz between channels

Allowed values: Up to 400000 Hz

Set to 100KHz Channel Spacing:

eRIC_ChannelSpacing = 100000;

eRIC_RadioUpdate();*

eRIC_RfBaudRate unsigned long Sets the RF data rate of the transceiver

Allowed Values: 1200, 2400, 4800, 9600,

10000, 19200, 38400 (default), 76800,

100000, 175000, 250000, 500000.

Set Data Rate to 250Kbps:

eRIC_RfBaudRate = 250000 ;

eRIC_RadioUpdate();*

eRIC_RadioTx_BuffCount unsigned char Sets the number of bytes to transmit eRIC_RadioTx_BuffCount = 10;

eRIC_RadioTx_Buffer[]; unsigned char 250 Bytes This is the Radio Transmit buffer and should

be filled before sending

eRIC_RadioTx_Buff[0] = ‘e’;

eRIC_RadioTx_Buff[1] = ‘R’;
eRIC_RadioTx_BuffCount = 2;

eRIC_RfSenddata();

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 5 of 24

IsGroupID_Enabled(); Boolean Return non-zero, if group id is enabled eROS

4

IsRadio_Rx_Busy(); Boolean Returns non-zero, if radio is busy receiving

data

 eROS

4

Is60ByteLimitEnabled(); Boolean Returns non-zero, if cpuclock speed is less

than 9 times the radio baudrate. 60 Bytes of

limited data is only sent to prevent locking

up the radio when clockspeed is less than

necessary radiobaudrates.

 eROS

4

IsAsyncModeEnabled(); Boolean Returns non-zero when asynchronous mode

is selected

 eROS

4

eRIC_RxPowerLevel Char . only 0-8 values are to be used 0 = Radio is 100% ON

1 12.5% of the time or current of Radio ON

2 6.25% of the time or current of Radio ON

3 3.13% of the time or current of Radio ON

4 1.56% of the time or current of Radio ON

5 0.78% of the time or current of Radio ON

6 0.39% of the time or current of Radio ON

7 0.20% of the time or current of Radio ON

8 0% Complete turn off radio receiver and

puts radio in idle and sleep .

eRIC_RxPowerLevel= 7;

eRIC_RadioUpdate();

This sets the Radio in to lowest power mode, which is about

0.2% of what it will be when the radio was completely on. This

setting brings the radio current consumption down to 32uA

which 0.2%of16mA

Clockspeed should be always 9 times more than Baudrate of

the radio to work low power modes

CpuFrequency>=9*eRIC_RfBaudrate

eROS

4.1

eRIC_TxPowerLevel Char . only 0-8 values are to be used

This need to be set in according to the

setting of the eRIC_RxPowerLevel and

should follow the below equation:

eRIC_TxPowerLevel>=

eRIC_RxPowerLevel.

When eRIC_RxPowerLevel is 8 and

eRIC_TxPowerLevel is 8 then radio is put in

idle and sleep

eRIC_TxPowerLevel = 7;

eRIC_RadioUpdate();

Clockspeed should be always 9 times more than Baudrate of

the radio to work low power modes

CpuFrequency>=9*eRIC_RfBaudrate

eROS

4.1

eRIC_AES_Key[]; Char 17 bytes. First byte being the mode

and rest 16 bytes being the key

This need filling accordingly before calling

eRIC_AES_ChangeKey(); or

eRIC_AES_SetKey();

 eROS

4.1

eRIC_AES_Data[]; Char 16 bytes. This is used before or after

eRIC_AES_Run();

 eROS

4.1

* Note that ‘eRIC_RadioUpdate();’ does not need to be called after each setting change. Multiple settings can be modified followed by a call to ‘eRIC_RadioUpdate();’

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 6 of 24

eRIC_Frequency = 915000000; // Set Channel 0 position to 915MHz (Base/Centre Frequency)

eRIC_ChannelSpacing = 150000; // Set Channel Spacing to 150KHz

eRIC_Channel = 1; // Set Channel 1 (915.150MHz)

eRIC_RfBaudRate = 250000 ; // Set data rate to 250Kbps

eRIC_Power = -3; // Set Power to FCC USA limit (-3dBm)

eRIC_RadioUpdate(); // Single call to update all above changes

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 7 of 24

Non-Radio Functions and Commands

Functions Parameters Description Notes OS

eRIC_SetCpuFrequency(ClockFrequ

ency);

ClockFrequency = 10000, 20000, 32000,

40000, 50000, 60000 and 70000 to 2000000

Improvements from previous version

Sets the clock frequency If this is not used, the default clock

frequency set to 1048576.

eROS4

eRIC_SetAdcPin(eRICPinNumber); eRICpinNumber can only be 1,2,3,4,5 and 22 Assigns ADC functionality to the Pin passed in eRIC

V1.4

eRIC_SetAdcRefVoltage(eRIC_Refer

enceVoltage,RefOut_OnorOff_Pin22

);

There are 3 eRIC_ReferenceVoltage :

1)eRICADCRef_1_5v

2)eRICADCRef_2_0v

3)eRICADCRef_2_5v

RefOut_OnorOff_Pin22 = 0 or 1

The selected reference voltage can be output on Pin22

when RefOut_OnorOff_pin22 =1

 eRIC

V1.4

eRIC_ReadAdc();

Was

None

Was

Reads 12 bit Digital Adc value on eRIC pin passed in and

with Reference voltage.

For eg:

eRIC_SetAdcPin(1);

eRIC_SetAdcRefVoltage(eRICADCRef_1_5v,1);

int Temp = eRIC_ReadAdc();

This gives a digital Adc value on pin 1 with reference

voltage 1.5v.Actual voltage =((Received 12 bit digital

vaule)*1.5)/4096;

1.5 because 0 is passed and 4096 because its a12 bit

ADC. The reference voltage can also be seen on Pin22

as RefOut_OnorOff_Pin22 is set as 1.

This is a 2 Byte data. 12bits Adc.

Before using this function, pin mapping is

required for the particular pin used in the

function

eRIC

V1.4

eRIC_GetTemperature(); None Gives the current temperature of the chip device.

Return the real float value of temperature in decimal in

degree Celsius. Accuracy is +/-3 degrees C.

 eROS4

eRIC_UARTAInitialise(Baudrate); Baudrate = 1200, 2400, 4800, 9600, 19200,

38400, 57600, 115200 or can be any UART

Baud

Initialise the Uart with the desired Baudrate Before initialising, Uart_Rx and Uart_TX

must be mapped to one of the secondary

mapping pins on eRIC

eRIC_UARTA_SetBaud(Baudrate); Baudrate = 1200, 2400, 4800, 9600, 19200,

38400, 57600, 115200 or can be any UART

Baud

Baud rate can be changed at any time, after initialisation Changing baud rates affects the timing of

the RX and TX data, so check the timings

when the baud rate is changed

eRIC_UartAReceiveByte() None Gets one Byte of Uart Rx Data Uart_Rx and Uart_TX must be mapped to

one of the secondary mapping pins on

eRIC

eRIC_UartARxBufferIsBusy();

eRIC_UartARxBufferIsEmpty();

None Test to see if RX buffer is busy or empty

eRIC_UartARxInteruptDisable(); None UartA Rx interrupt can be Enabled and Disabled Interrupts can be handled using Pragma

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 8 of 24

eRIC_UartARxInteruptEnable(); vectors, which can be found in eRIC.c. This

can be copied into main application.

eRIC_UartARxIsEnabled(); None Test to see if the Rx interrupt is enabled

eRIC_UartASendByte(Data); Data can be any unsigned char Transmits one byte of data on Uart TX Uart_Rx and Uart_TX must be mapped to

one of the secondary mapping pins on

eRIC

eRIC_UartATxBufferIsBusy();

None Test to see if Tx buffer is Busy or Empty

eRIC_UartATxBufferIsEmpty();

eRIC_UartATxInteruptDisable();

eRIC_UartATxInteruptEnable();

None UartA tx interrupt can be enabled or disabled

eRIC_UartATxIsEnabled(); None Test to see if UartA tx interrupt enabled

eRIC_UartA_SyncMode(); None Synchronous mode is selected for UartA eRIC

V1.4

eRIC_UartA_AsyncMode(); None ASynchronous mode is selected for UartA eRIC

V1.4

eRIC_UartA_2StopBits(); None Enables two stop bits eRIC

V1.4

eRIC_UartA_1StopBit(); None Enables one stop bit eRIC

V1.4

eRIC_UartA_7Bit(); None Enables 7Bit packet eRIC

V1.4

eRIC_UartA_8Bit(); None Enables 8Bit packet eRIC

V1.4

eRIC_UartA_MsbFirst(); None MSB first is enabled in UartA transmit or receive eRIC

V1.4

eRIC_UartA_LsbFirst(); None LSB first is enabled in UartA transmt or receive eRIC

V1.4

eRIC_UartA_EvenParity(); None EvenParity mode is selected eRIC

V1.4

eRIC_UartA_OddParity(); None Odd parity mode is selected eRIC

V1.4

eRIC_UartA_ParityEnable(); None Parity is enabled eRIC

V1.4

eRIC_UartA_ParityDisable(); None Parity is Disabled eRIC

V1.4

eRIC_UartATxSetInterruptFlag(); None Set the Tx interrupt flag eRIC

V1.5

eRIC_UartATxClearInterruptFlag(); None Clears the Tx interrupt flag eRIC

V1.5

eRIC_UartATxHasInterrupted(); None Is the Tx interrupt triggered, or flag set? eRIC

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 9 of 24

V1.5

eRIC_UartARxSetInterruptFlag(); None Set the Rx interrupt flag eRIC

V1.5

eRIC_UartARxClearInterruptFlag(); None Clears the Rx interrupt flag eRIC

V1.5

eRIC_UartARxHasInterrupted(); None Is the Rx interrupt triggered, or flag set? eRIC

V1.5

eRIC_SpiAInitialise(SpiClock); SpiClock in Hz Initialises Spi with desired clock speed Spi Slave, Master and Clock pins must be

mapped using Secondary mapping function

before initialising. Similarly SpiB can also be

configured by replacing eRIC_SpiB in place

of eRIC_SpiA

eRIC_SpiARead(Data); Data is dummy data to read SPIdata Gets Spi Data after sending a dummy byte Similarly SpiB can also be configured

eRIC_SpiAWrite(Data); Data is any unsigned char Send a byte of data through SPI Similarly SpiB can also be configured

eRIC_SpiATxInteruptEnable(); None Enables the SpiA Tx interrupt Similarly SpiB can also be configured

eRIC_SpiATxInteruptDisable(); None Disables the SpiA Tx interrupt Similarly SpiB can also be configured

eRIC_SpiATxIsEnabled(); None Returns Non Zero if Tx is enabled Similarly SpiB can also be configured

eRIC_SpiATxBufferIsEmpty(); None Returns Non Zero if Tx buffer is empty Similarly SpiB can also be configured

eRIC_SpiATxBufferIsBusy(); None Returns Non zero if Tx buffer is busy Similarly SpiB can also be configured

eRIC_SpiARxInteruptEnable(); None Enables Rx interrupt Similarly SpiB can also be configured

eRIC_SpiARxInteruptDisable(); None Disables Rx interrupt Similarly SpiB can also be configured

eRIC_SpiARxIsEnabled(); None Returns Non Zero if Rx is enabled Similarly SpiB can also be configured

eRIC_SpiARxBufferIsEmpty(); None Returns Non Zero if Rx is empty Similarly SpiB can also be configured

eRIC_SpiARxBufferIsBusy(); None Return Non Zero if Rx is busy Similarly SpiB can also be configured

eRIC_SpiASendByte(Data); Data can be one byte of data Send data if Tx buffer is not busy Similarly SpiB can also be configured

eRIC_SpiAReceiveByte(); None Returns one byte of data if SpiA receives it Similarly SpiB can also be configured

eRIC_SpiASyncMode(); None Synchronous mode is selected for Spi communications Similarly SpiB can also be configured

eRIC_SpiA_ASyncMode(); None Asynchonous mode is selected for Spi communications Similarly SpiB can also be configured

eRIC_SpiA_3PinMode(); None 3pin mode is selected for Spi communications Similarly SpiB can also be configured

eRIC_SpiA_4Pin_SteActiveHigh(); None Similarly SpiB can also be configured

eRIC_SpiA_4Pin_SteActiveLow(); None Similarly SpiB can also be configured

eRIC_SpiA_MasterMode(); None The device is set as Master for I2C Similarly SpiB can also be configured

eRIC_SpiA_SlaveMode(); None The device is set as Slave for I2C Similarly SpiB can also be configured

eRIC_SpiA_7Bit(); None 7Bit data packet is enabled Similarly SpiB can also be configured

eRIC_SpiA_8Bit(); None 8Bit data packet is enabled Similarly SpiB can also be configured

eRIC_SpiA_MsbFirst(); None MSb as first bit of data is enabled Similarly SpiB can also be configured

eRIC_SpiA_LsbFirst(); None LSB as first bit of data is enabled Similarly SpiB can also be configured

eRIC_SpiA_ClkIdleHigh(); None Similarly SpiB can also be configured

eRIC_SpiA_ClkIdleLow(); None Similarly SpiB can also be configured

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 10 of 24

eRIC_SpiA_DataOn1stUclkEdge(); None Data on first clock edge Similarly SpiB can also be configured

eRIC_SpiA_DataOn2ndUclkEdge(); None Data on second clock edge Similarly SpiB can also be configured

eRIC_I2CB_Initialise(I2CClock,Mast

erorSlave,Address);

I2CClock is a clock frequency in Hertz.

MasterorSlave can be 0 or 1.

Address is selected as Slave address or Own

address automatically based on Master or Slave

selection.

For Eg:eRIC_I2CClock(100000,1,0x0A);

Masteror Slave is 1 if Master or 0 if Slave

 eRIC

V1.4

eRIC_I2CB_TxInteruptEnable(); None Enables the I2CB Tx interrupt eRIC

V1.4

eRIC_I2CB_TxInterruptDisable(); None Disables the I2CB Tx interrupt eRIC

V1.4

eRIC_I2CB_TxIsEnabled(); None Returns Non Zero if Tx is enabled eRIC

V1.4

eRIC_I2CB_TxBufferIsEmpty(); None Returns Non Zero if Tx buffer is empty eRIC

V1.4

eRIC_I2CB_TxBufferIsBusy(); None Returns Non zero if Tx buffer is busy eRIC

V1.4

eRIC_I2CB_RxInteruptDisable(); None Disables Rx interrupt eRIC

V1.4

eRIC_I2CB_RxInteruptEnable(); None Enables Rx interrupt eRIC

V1.4

eRIC_I2CB_RxIsEnabled(); None Returns Non Zero if Rx is enabled eRIC

V1.4

eRIC_I2CB_RxBufferIsEmpty(); None Returns Non Zero if Rx is empty eRIC

V1.4

eRIC_I2CB_RxBufferIsBusy(); None Return Non Zero if Rx is busy eRIC

V1.4

eRIC_I2CB_SendByte(Data); Data can be one byte of data Send data if Tx buffer is not busy eRIC

V1.4

eRIC_I2CB_ReceiveByte(); None Returns one byte of data if I2C receives it eRIC

V1.4

eRIC_I2CB_SyncMode(); None Synchronous mode is selected for I2C communications eRIC

V1.4

eRIC_I2CB_ASynchMode(); None Asynchonous mode is selected for I2C communications eRIC

V1.4

eRIC_I2CB_MasterMode(); None The device is set as Master for I2C eRIC

V1.4

eRIC_I2CB_SlaveMode(); None The device is set as Slave for I2C eRIC

V1.4

eRIC_I2CB_MultiMasterMode(); None Multimaster mode is enabled for I2C communications eRIC

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 11 of 24

V1.4

eRIC_I2CB_SingleMasterMode(); None Single Master mode is enabled for I2C communications eRIC

V1.4

eRIC_I2CB_10BitSlaveAddress(); None 10Bit slave address is enabled eRIC

V1.4

eRIC_I2CB_7BitSlaveAddress(); None 7Bit slave address is enabled eRIC

V1.4

eRIC_I2CB_10BitOwnAddress(); None 10Bit Own address is enabled eRIC

V1.4

eRIC_I2CB_7BitOwnAddress(); None 7Bit Own address is enabled eRIC

V1.4

eRIC_I2CB_SoftwareResetEnable(); None Software reset is enabled for I2C eRIC
V1.4

eRIC_I2CB_SoftwareResetDisable(); None Software reset is disabled for I2C eRIC

V1.4

eRIC_I2CB_IsStartActive(); None Returns Non zero if start condition is On eRIC

V1.4

eRIC_I2CB_Start(); None Starts the I2C communication eRIC

V1.4

eRIC_I2CB_Stop(); None Stops the I2C communication eRIC

V1.4

eRIC_I2CB_IsStopConditionOn(); None Returns Non zero if stop condition is still on eRIC

V1.4

eRIC_I2CB_NackOn(); None Slave acknowledging with Nack is turned on eRIC

V1.4

eRIC_I2CB_NackOff(); None Slave acknowledging with Nack id turned off eRIC

V1.4

eRIC_I2CB_AsTransmitter(); None Sets the device as transmitter eRIC

V1.4

eRIC_I2CB_AsReceiver(); None Sets the device as receiver eRIC

V1.4

eRIC_I2CB_IsSCL_Low(); None Returns Non zero if SCL line is pulled low eRIC

V1.4

eRIC_I2CB_IsBusBusy(); None Returns Non zero if I2C bus is busy eRIC

V1.4

eRIC_I2CB_OwnAddress None Can be used to assign address

For Eg: eRIC_I2CB_OwnAddress = 0x0A;

 eRIC

V1.4

eRIC_I2CB_SlaveAddress None Can be used to assign address

For Eg: eRIC_I2CB_SlaveAddress = 0x0A;

 eRIC

V1.4

eRIC_I2CB_WaitforACK(); None Returns Non zero if ACK is not received or start

condition is still on

 eRIC

V1.4

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 12 of 24

eRIC_I2CB_NackReceived(); None Returns Non zero if Nack is received eRIC

V1.4

eRIC_Eeprom_Read(Address); Address can range from 0-255. As EEprom is

only 256 bytes size.

Reads EEprom data from the address passed in

eRIC_Eeprom_Write(Address,Data)

;

Address can range from 0-255. As EEprom is

only 256 bytes size.

Data is any char

Write the data on to EEprom address passed in.

eRIC_GetSerialNumber() None Return 4 bytes long serial number. This is a unique serial

number to each eRIC module. Each module is tracked

and licensed based on this serial number.

E.g. 400000AB 900000CB etc. The MSB

tells which module it is. eRIC4 or eRIC9.

eROS4

eRIC_Delay(MilliSeconds) MilliSeconds ranges from 1-65535ms. eRIC_Delay(1000); //Waits for 1 sec eROS4

eRIC_AES_ChangeKey(); None .Needs eRIC_AES_Key[17] filling first Fill eRIC_AES_Key[0-17], first byte being mode(0

encryption,1decryption) and rest 16 Bytes being Key,

before calling eRIC_AES_ChangeKey();.

This will change AES key and also encrypts key using

another discrete key and store the encrypted key in

discrete location. This will also set key at the end of this

function.

For example:

To encrypt data:

Setting key first:

char i =0;

while(i<17) //0 mode as encryption and 1-

//16 as key

eRIC_AES_Key[i++];

eRIC_AES_ChangeKey();

i =0;

while(i<16)

eRIC_AES_Data[i++];

eRIC_AES_Run();

//After this encrypted16 bytes of data is

//available in eRIC_AES_Data[16]

To decrypt data:

eRIC_AES_Key[0]=1; //decryption mode

eRIC_AES_SetKey();//as key is same, don’t

//change key

//store encrypted data in

eRIC_AES_Data[16];

//and call

eRIC_AES_Run();

//Decrypted 16 bytes of data will be

//available in eRIC_AES_Data[16]

eROS

4.1

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 13 of 24

eRIC_AES_SetKey(); None..Needs eRIC_AES_Key[17] filling first Fill eRIC_AES_Key[0-17], first byte being mode(0

encryption,1decryption) and rest 16 Bytes being Key,

before calling eRIC_AES_SetKey();

This will set the AES key with encryption or decryption.

 eROS

4.1

eRIC_AES_Run(); None. .Needs eRIC_AES_Data[16] filling first To encrypt data fill eRIC_AES_Data[16] and call

eRIC_AES_Run();.

To decrypt data call eRIC_AES_Run(); and data is

available in eRIC_AES_Data[16].

 eROS

4.1

eRIC_WDT_Setup(Modebits); Where Modebits=(Clocksource+Time

Interval)

ClockSource available are:

1) eRICWDT_Cs_CPU

2) eRICWDT_Cs_32k

3) eRICWDT_Cs_10k

TimeInterval available are:

1) eRICWDT_Interval_64

2) eRICWDT_Interval_512

3) eRICWDT_Interval_8192

4) eRICWDT_Interval_32768

5) eRICWDT_Interval_524288

6) eRICWDT_Interval_8388608

7) eRICWDT_Interval_134217728

8) eRICWDT_Interval_2147483648

Sets the Watch dog timer with selected clock source

and triggers after the selected number of interval of

cycles with that clock source

E.g.

eRIC_WDT_Setup(eRICWDT_Cs_32k+e

RICWDT_Interval_32768);

This sets the watch dog timer with 32k

clock and triggers the interrupt after every

32768 cycles which is 1 second.

***This watch dog timer never resets the

module. It only sets the flag or triggers the

interrupt vector if handled.

eROS4

eRIC_WDT_Stop(); None This stops the already running WDT eROS4

eRIC_WDT_Start(); None This starts the WDT again with preset WDT

clocksource and Interval

 eROS4

eRIC_WDT_Reset(); None This resets the WDT timer and counts again from start.

If one doesn’t want to trigger the WDT, care should be

taken to reset WDT before the WDT timer expires

 eROS4

eRIC_WDT_InterruptEnable(); None This enables the interrupt for WDT The code for WDT interrupt vector is

available in eRIC.c . Code can be written in

there or it can be copied into main.

Whenever interrupt triggers, program

counter jumps in to it

eROS4

eRIC_WDT_InterruptDisable(); None This disables the WDT interrupt eROS4

eRIC_WDT_HasInterrupted(); None This returns non zero if interrupt flag is set and

interrupt has been triggered

If WDT interrupt vector is not used, this

can be monitored in code.

eROS4

eRIC_WDT_ClearInterruptFlag(); None This clears the WDT interrupt flag If WDT interrupt vector is not used, this eROS4

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 14 of 24

can be monitored in code

eRIC_PowerOnReset(); None This is a software power on reset (POR) of the eRIC

module

 eROS4

eRIC_GlobalInterruptEnable(); None Enables all global interrupts eROS4

eRIC_GlobalInterruptDisable(); None Disables all global interrupts eROS4

eRIC_FlashProgram_Mode(Mode); Where Mode = 0, jumps into bootloader and it

needs flashing new app code to come of it.

 eROS4

eRIC_LPM_Level0(); None Turn off only MCLCK, and enter sleep mode eROS4

eRIC_LPM_ExitLevel0(); None Exits the sleep mode and LPMlevel0 and continues the

program from where it went into sleep before

 eROS4

eRIC_LPM_Level1(); None Turns off MCLCK and SMCLCK and enter sleep mode eROS4

eRIC_LPM_ExitLevel1(); None Exits the sleep mode and LPMLevel1 and continues the

program from where it went into sleep before

 eROS4

eRIC_LPM_Level2(); None Turns off all clocks and enters sleep mode eROS4

eRIC_LPM_ExitLevel2(); None Exits the sleep mode and LPMLevel2 and continues the

program from where it went into sleep before

 eROS4

eRIC_RadioSleep(); None Sends the radio into Idle and sleep state eRIC

V1.4

eRIC_TimerA0_Setup(CompleteSet

up);

CompleteSetup can be addition of

clocksourse,clockdivider,Mode,interrupt etc

eRICTimer_Div_1

eRICTimer_Div_2

eRICTimer_Div_4

eRICTimer_Div_8

eRICTimer_Cs_32k

eRICTimer_Cs_Cpu

eRICTimer_Stop

eRICTimer_UpMode

eRICTimer_ContinousMode

eRICTimer_UpdownMode

eRICTimer_Reset

eRICTimer_InterruptEnable

eRICTimer_InterruptDisable

TimerA0 can be setup configured in one function.

For example:

eRIC_TimerA0_setup(eRICTimer_Cs_Cpu+

eRICTimer_Div_1+ eRICTimer_UpMode+

eRICTimer_Reset+

);

 eRIC

V1.5

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 15 of 24

eRIC_TimerA0_Cs(Clocksource); Clocksource can be either of two below:

eRICTimer_Cs_32k

eRICTimer_Cs_Cpu

This will choose clocksource for TimerA0. eRIC

V1.4

eRIC_TimerA0_ClockDIvider(Clock

divider);

Clockdivider can be any of the following:

eRICTimer_Div_1

eRICTimer_Div_2

eRICTimer_Div_4

eRICTimer_Div_8

This will further divide the clock by 1,2,4,8 eRIC

V1.4

eRIC_TimerA0_Stop(); None Halts the timer eRIC

V1.4

eRIC_TimerA0_UpMode(); None This is used if the timer period must be different from

0FFFFh counts. The timer repeatedly counts up to the

value of eRIC_TimerA0_Capture0orCompare0_Data,

which defines the period. The number of timer counts in

the period is

eRIC_TimerA0_Capture0orCompare0_Data + 1. When

the timer value equals

eRIC_TimerA0_Capture0orCompare0_Data, the timer

restarts counting from zero.

 eRIC

V1.4

eRIC_TimerA0_ContinousMode(); None In the continuous mode, the timer repeatedly counts up

to 0FFFFh and restarts from zero.

 eRIC

V1.4

eRIC_TimerA0_UpdownMode(); None This mode is used if the timer period must be different eRIC

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 16 of 24

from 0FFFFh counts, and if symmetrical

pulse generation is needed. The timer repeatedly counts

up to the value of

eRIC_TimerA0_Capture0orCompare0_Data

and back down to zero. The period is twice the value in

eRIC_TimerA0_Capture0orCompare0_Data.

V1.4

eRIC_TimerA0_Reset(); None Resets the timer eRIC
V1.4

eRIC_TimerA0_InterruptEnable(); None This enabled the TImerA0 interrupt eRIC

V1.4

eRIC_TimerA0_interruptDisable(); None This disables the TImerA0 interrupt eRIC

V1.4

eRIC_TimerA0_IsInterruptEnabled(); None This returns non zero if interrupt flag is set and

interrupt has been triggered

 eRIC

V1.4

eRIC_TimerA0_InterruptFlag_set(); None This sets the TimerA0 interrupt flag eRIC

V1.4

eRIC_TimerA0_InterruptFlag_Clear(

);

None This clears the TimerA0 interrupt flag eRIC

V1.4

eRIC_TimerA0_HasInterrupted(); None This returns non zero if interrupt flag is set and

interrupt has been triggered

 eRIC

V1.4

eRIC_TimerA0_Count_Read(); None This returns the 16bit count of the TimerA0 eRIC

V1.4

eRIC_TimerA0_Count_Set(intcount

number);

None This will write to count register of TImerA0 eRIC

V1.4

eRIC_TimerA0_Capture0orCompar

e0Setup(CompleteSetup);

CompleteSetup is used to select Capture

orcompare mode, Capture edge,interrupt and

compareoutputmode.

The following can be used:

eRICTimer_CaptureMode

eRICTimer_CompareMode

eRICTimer_CaptureNothing

eRICTImer_CaptureOnRising

eRICTimer_CaptureOnFalling

This is used to setup capture compare modes

 For Eg:

eRIC_TimerA0_Capture0orCompare0Setup(eRICTimer
_CompareMode+ eRICTimer_CaptureNothing+

eRICTimer_OutputMode_Toggle_Set+

eRICTimer_CCInterruptDisable);

 eRIC

V1.4

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 17 of 24

eRICTimer_CaptureOnBothFallRise

eRICTimer_OutputMode_Outputonly

eRICTimer_OutputMode_Set

eRICTimer_OutputMode_Toggle_Reset

eRICTimer_OutputMode_Set_Reset

eRICTimer_OutputMode_Toggle

eRICTimer_OutputMode_Reset

eRICTimer_OutputMode_Toggle_Set

eRICTimer_OutputMode_Reset_Set

eRICTimer_CCInterruptEnable

eRICTimer_CCInterruptDisable

eRIC_TimerA0_CaptureXorCompar

eX_Data

X can be 0,1,2,3,4 eRIC

V1.5

eRIC_TimerA0_CaptureXorComapr

eXInterruptEnable();

X can be 0,1,2,3,4 Enable capture or compare interrupt eRIC

V1.5

eRIC_TimerA0_CaptureXorComapr

eXInterruptDisable();

X can be 0,1,2,3,4 Disables capture or compare interrupt eRIC

V1.5

eRIC_PWM_Setup(ClockSource,Clo

ckDivider,UpDownContinousMode,

Period);

The following can be used as paramters

eRICPWM_Cs_32k

eRICPWM_Cs_CPU

eRICPWM_DIV_1

eRICPWM_DIV_2

eRICPWM_DIV_4

eRICPWM_DIV_8

eRICPWM_Stop

eRICPWM _UpMode

eRICPWM_ContinousMode

eRICPWM_UpdownMode

For Eg;
eRIC_PWM_Setup(eRICPWM_Cs_CPU,eRICPWM_DI

V_1,eRICPWM_UpMode,255); //Set PWM with clock

source, Clock divider, Period Mode and period

 eRIC

V1.4

eRIC_PWM_Cs(Clocksource); Clocksource can be either of two below:

eRICPWM_Cs_32k

eRICPWM_Cs_CPU

This will choose clocksource for PWM eRIC

V1.4

eRIC_PWM_UpDownContinousMo

de(UpDownContinousMode);

UpDownContinousMode can be one of the

following

eRICPWM_Stop

eRICPWM _UpMode

eRICPWM_ContinousMode

eRICPWM_UpdownMode

This will set different modes for PWM. Please refer

TimerA0 modes for detail explanantion

 eRIC

V1.4

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 18 of 24

eRIC_PWM_ClockDivider(Clockdivi

der);

Clockdivider can be one of the following

eRICPWM_DIV_1

eRICPWM_DIV_2

eRICPWM_DIV_4

eRICPWM_DIV_8

Clockdivider is used to divide further the clock:

 eRIC

V1.4

eRIC_PWM_Reset(); None Resets the PWM eRIC

V1.4

eRIC_PWM1_DutyCycle(DutyCycle,

LogicOutput);

Similarly

eRIC_PWM2_DutyCycle(DutyCycle,

LogicOutput);

eRIC_PWM3_DutyCycle(DutyCycle,

LogicOutput);

eRIC_PWM4_DutyCycle(DutyCycle,

LogicOutput);

DutyCycle can be 16Bit number and

LogicOutput can be one of the following:

eRICPWM_OutputMode_Set

eRICPWM_OutputMode_Toggle_Reset

eRICPWM_OutputMode_Set_Reset

eRICPWM_OutputMode_Toggle

eRICPWM_OutputMode_Reset

eRICPWM_OutputMode_Toggle_Set

eRICPWM_OutputMode_Reset_Set

This is used to set the DutyCycle of each PWM and also

the mode of when to set reset or toggle.

 eRIC

V1.4

eRIC_PWM_Period(Period); Period can be any 16Bit number This is used to set the period of the PWM eRIC

V1.4

eRIC_CRC_Initialise(Data); Data is any 8Bit data CRC module is initialised with first byte of data eRIC

V1.4

eRIC_CRC_FirstByte(Data); Data is any 8Bit data First Byte should be send to CRC module using this eRIC

V1.4

eRIC_CRC_NextByte(Data); Data is any 8Bit data The following Bytes of data can be sent using this eRIC

V1.4

eRIC_CRC_Result(); None The result of the CRC is returned using this function eRIC

V1.4

eRIC_Stringcopy(*destination,*sourc

e,count);

Where destination is the address of

destination string, source is the address of the

source and count is no of bytes to be copies

Copies one string into another eROS4

eRIC_Stringcompare(*a,*b,count); Where a is the address of first string and b is

address of second string and count is no of

bytes to be compared

Compares two strings and return 0 if they are same. eROS4

eRIC_Stringlength(*string); Where string is the address of the string for

which length needs finding

Returns no of bytes of the string. eROS4

eRIC_Sprintf(*buff,*string,val); Where buff is the address where formatted

string is stored, string is format,val is the data

to be formatted.

Formats available are:

%d,%d which prints decimal data with sign.

Returns the length of the formatted string eROS4

eRIC_Print(*txt); Where txt is the address of the string which

prints on to Uart

 eROS4

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 19 of 24

eRIC_Ascii2Hex(val); Where val can be any Ascii char between 0-

9,a-f,A-F.

Converts Ascii to Hex and returns hex val. eROS4

eRIC_Int2Ascii(val); Where val can be any Int 0-F Converts Int to Ascii character eROS4

eRIC_SetGDOSIgnal(SelectSignalTyp

e);

SelectSignalType can be one of the below

signals:

eRICGDO_SyncWordSignal

eRICGDO_PacketReceivedWithCRCOKSignal

eRICGDO_CarrierSenseSignal

eRICGDO_RadioTransmitSignal

eRICGDO_RadioReceiverSIgnal

eRICGDO_RadioRSSIValidSignal

eRICGDO_RadioRXTimeoutSignal

eRICGDO_RadioClock32Signal

Other signals can be found on Page 712 of

SLAU259 datasheet

This function is used to assign one of the signals listed

beside to GDO. Once a signal is assigned, a Pin needs to

be mapped to this GDO using

PinX_FunctionGDOSignal(); . Once this is done, a signal

is checked on pin.

For example: To check when the receiver

is turning ON and OFF or when the

receiver is receving data, we need to do

the following steps:

eRIC_SetGDOSignal(eRICGDO_RadioRec

eiverSIgnal);

Pin19_FunctionGDOSIgnal();

Now Pin19 will stay High when the

Receiver is OFF and will go low whenever

Radio receiver is ON or receives anything.

eROS

4.1

eRIC

V1.5

eRIC_SetPMMVCoreLevel(Level) Level can be 0,1,2,3,4.

When 4 is used, PMM is turned off.

This is to set the Voltage level for power management

module. This needs to be set based on Cpu frequency,

and radio being used. Genereally it is set to level 3.

Refer SLAU259 datasheet for more details eROS

4.1

eRIC

V1.5

eRIC_RadioRegWrite(RegAddress,D

ata);

RegAddress is register address.

Data is the value that can go into register

address

 Refer SLAU259 datasheet for more details eROS

4.1

eRIC

V1.5

eRIC_RadioRegRead(RegAddress); RegAddress is register address.

 Refer SLAU259 datasheet for more details eROS

4.1

eRIC

V1.5

eRIC Pins Functionality and Usage

eRIC has 24 Pins, of which Pin 6 is Vcc, Pin 7 is ground, Pin 8, 9 are used by JTAG only, Pin 23 Ground and Pin 24 Antenna.

18 Pins are therefore available for general purpose (I/O), secondary mapping function and interrupts.

Pins 1-5 and Pin 22 are also Analogue pins. Any ADC or Analogue function should therefore only be connected to these pins. These pins also have interrupts.

Please note ‘X’ can be any of the 18 pin numbers below and ‘Y’ can be only be Pins 1-5 and Pin 22.

Functions Parameters Description Notes OS

PinX_PullUpEnable(); None Enable or Disable the Pull up/pull down resistor on pin Where ‘X’ is one of the 18 available pins

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 20 of 24

PinX_PullDownEnable();

PinX_PullUpDisable();

PinX_SetAsOutput();

PinX_SetHigh();

PinX_SetLow();

None

Set Pin as output and then set high or low;

E.g. Pin1_SetAsOutput();

 Pin1_SetHigh();//logic 1

 Pin1_SetLow();//logic 0

Where ‘X’ is one of the 18 available pins

PinX_Toggle(); None
Toggles Pin output state from 1 to 0 or 0 to 1

Eg:Pin1_Toggle();//Toggles Pin1 Output state.
Where ‘X’ is one of the 18 available pins

eRIC

V1.4

PinX_SetAsInput();

PinX_Read();
None

Set Pin as input and read the state of the input on the pin

E.g. Pin1_SetAsInput();

 If(Pin1_Read() == 1)

 {

 //Do something;

 }

Where ‘X’ is one of the 18 available pins

PinX_HighDriveStrength_15mA();

PinX_LowDriveStrength_6mA();
None

Set Pin high and low maximum drive current (mA source/sink) of each pin

individually

Default = Low 6mA

Where ‘X’ is one of the 18 available pins

PinX_InterruptLow2High();

PinX_InterruptHigh2Low();

PinX_InterruptDirection();

None

Pin Interrupt Edge Direction

Set Interrupt Flag on Pin Low to High

Set Interrupt Flag on Pin High to Low

Read Interrupt Edge selection

Pins1-5 and Pin22 only can use this

PinX_InterruptEnable();

PinX_InterruptDisable();

PinX_InterruptEnabled();

None

Pin Change Interrupt Enable/Disable

Enable Pin Interrupt, only use when using Interrupt Service Routine

Disable Pin Interrupt

Read Interrupt Enabled status

Pins1-5 and Pin22 only can use this

PinX_SetInterruptFlag();

PinX_ClearInterruptFlag();

PinX_HasIntterupted();

None

Set Interrupt Flag on pin

Reset Interrupt flag

Test if Pin has changed

Pins1-5 and Pin22 only can use this

PinX_FunctionIO(); None Maps the pin as general I/O Where ‘X’ is one of the 18 available pins

PinX_FunctionNone(); None Nothing is mapped to the pin Where ‘X’ is one of the 18 available pins

PinX_FunctionAclk(); None Maps the pin to Aclk Where ‘X’ is one of the 18 available pins

PinX_FunctionMclk(); None Maps the pin to Mclk Where ‘X’ is one of the 18 available pins

PinX_FunctionSmclk(); None Maps the pin to Smclk Where ‘X’ is one of the 18 available pins

PinX_FunctionTA0clkIN(); None Maps the pin to Timer 0 Where ‘X’ is one of the 18 available pins

PinX_FunctionUartATxOUT(); None Maps the pin to Uart transmit Where ‘X’ is one of the 18 available pins

PinX_FunctionUartARxD(); None Maps the pin to Uart Receive Where ‘X’ is one of the 18 available pins

PinX_FunctionSPIA_MI(); None Maps the pin to SPIA Master in. Similarly SPIB can also be mapped Where ‘X’ is one of the 18 available pins

PinX_FunctionSPIA_MO(); None Maps the pin to SPIA Master out. Similarly SPIB can also be mapped Where ‘X’ is one of the 18 available pins

PinX_FunctionSPIA_SI(); None Maps the pin to SPIA Slave in. Similarly SPIB can also be mapped Where ‘X’ is one of the 18 available pins

PinX_FunctionSPIA_SO(); None Maps the pin to SPIA Slave out. Similarly SPIB can also be mapped Where ‘X’ is one of the 18 available pins

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 21 of 24

PinX_FunctionSPIA_SCLK(); None Maps the pin to SPIA Clock out. Similarly SPIB can also be mapped Where ‘X’ is one of the 18 available pins

PinX_FunctionSPIA_STE(); None Maps the pin to SPIA Transmit enable. Similarly SPIB can also be mapped Where ‘X’ is one of the 18 available pins

PinX_FunctionI2CB_SCl(); None Maps the pin to i2c clock Where ‘X’ is one of the 18 available pins

PinX_FunctionI2CB_SDA(); None Maps the pin to i2c data Where ‘X’ is one of the 18 available pins

PinX_FunctionA2D(); None Maps the pin to Analog function Pins1-5 and Pin22 only can use this

PinX_SetAsAsyncRxData(); None Sets the pin as receiver output pin in Asynchronous mode Where ‘X’ is one of the 18 available pins eROS4

PinX_SetAsAsyncTxData(); None Sets the pin as transmitter input pin in Asynchronous mode Where ‘X’ is one of the 18 available pins eROS4

PinX_FunctionUartABusy() None
This is used to set a Uart busy pin. Used for handshaking (controlled by Radio

functions)
 eROS4

PinX_FunctionTA0CompareOut0(); None Sets the Pin as Timer0 CompareOutput Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CompareOut1(); None Sets the Pin as Timer0 CompareOutput Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CompareOut2(); None Sets the Pin as Timer0 CompareOutput Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CompareOut3(); None Sets the Pin as Timer0 CompareOutput Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CompareOut4(); None Sets the Pin as Timer0 CompareOutput Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionPWM1(); None Sets the Pin as Pulsewidthmodulation 1 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionPWM2(); None Sets the Pin as Pulsewidthmodulation 2 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionPWM3(); None Sets the Pin as Pulsewidthmodulation 3 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionPWM4(); None Sets the Pin as Pulsewidthmodulation 4 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CaptureIn0(); None Sets the Pin as Timer0 CaptureInput0 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CaptureIn1(); None Sets the Pin as Timer0 CaptureInput1 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CaptureIn2(); None Sets the Pin as Timer0 CaptureInput2 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CaptureIn3(); None Sets the Pin as Timer0 CaptureInput3 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionTA0CaptureIn4(); None Sets the Pin as Timer0 CaptureInput4 Where ‘X’ is one of the 18 available pins
eRIC

V1.4

PinX_FunctionGDOSignal(); None
Sets the pin as GDO signal which can be assigned to other signals using

eRIC_SetGDOSignal(SelectSignalType);
Where ‘X’ is one of the 18 available pins

eRIC

V1.5

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 22 of 24

eROS

V4.1

Note: Code Composer Studio uses ‘autocomplete’. To complete a command or variable, press ctrl+space after first character.

Further information on programming is provided in the eRIC Tutorials 1, 2 and 3.

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 23 of 24

Sample Application Code using some of the above functions

#include<cc430f5137.h>

#include "eRIC.h"

#include <stdio.h>
#include <string.h>

/*

 * main.c

* This program code reads ADC value on Pin22 and also reads temperature around the module and sends over air through RF at 459600000hz frequency

* with 9dbm RF power continuously every 2 seconds

 */

int main(void)

 {

 eRIC_WDT_Stop(); //stops the watch dog timer

 eROS_Initialise(434000000);// initialse eros with 434000000

 eRIC_Rx_Enable(); //Enable radio receive mode,if not enabled can save power

 eRIC_SetCpuFrequency(4000000); //Cpu clock speed is set to 4Mhz

 eRIC_ChannelSpacing = 200000; //Channel spacing is 200khz

 eRIC_Channel = 128; //Channel changed to 128 , Now frequency would be (434000000+(128*200000)) = 459600000Hz

 eRIC_RfBaudRate = 38400; // Over air baud rate changed to 38400

 eRIC_Power = 9; //power is set to 9

 eRIC_RadioUpdate(); //Makes all above Radio changes in eROS

 volatile long AdcResult = 0;

 volatile float temperature = 0; //Decalred as float because temperature will be in points

 LED4Enable(); //Led4 which is pin19 is set as output

 Pin22_FunctionA2D(); //Map pin 22 to ADC

 eRIC_SetAdcPin(22); //Sets ADC on Pin22 .Added in V1.4

 eRIC_SetAdcRefVoltage(eRICADCRef_1_5v,0); //Sets ADC reference with 1.5v and Ref out is not selected . Added in V1.4

 while(1)

 {

 LED4_Set(); //Led4 which is pin19 is turned on

 //

 AdcResult = eRIC_ReadAdc();//To read ADC value on pin 22 at reference 1.5v (0) . Added in V1.4

 temperature= eRIC_GetTemperature(); // to read temperature

 eROS - easyRadio Operating System Developers Manual. - Version 1.2

eRIC_eROS_Developers_Manual_1.2 Page 24 of 24

 eRIC_RadioTx_Buffer[eRIC_RadioTx_BuffCount++] = AdcResult>>8; // Fills Adc value into Rf transmit buffer

 eRIC_RadioTx_Buffer[eRIC_RadioTx_BuffCount++] = AdcResult; // Fills Adc value into Rf transmit buffer

 eRIC_RadioTx_Buffer[eRIC_RadioTx_BuffCount++] = temperature; // Fills temperature real value into Rf transmit buffer

 eRIC_RadioTx_Buffer[eRIC_RadioTx_BuffCount++] = (temperature*100); // Fills temperature decimal value into Rf transmit buffer

 eRIC_RfSenddata(); // sends Adc value and temperature in four bytes over air through RF

 eRIC_Delay(1000); //1 sec delay 1000ms

 LED4_Clear(); //Led4 which is pin19 is turned Off

 eRIC_Delay(1000); //1 sec delay 1000ms

 }

}

